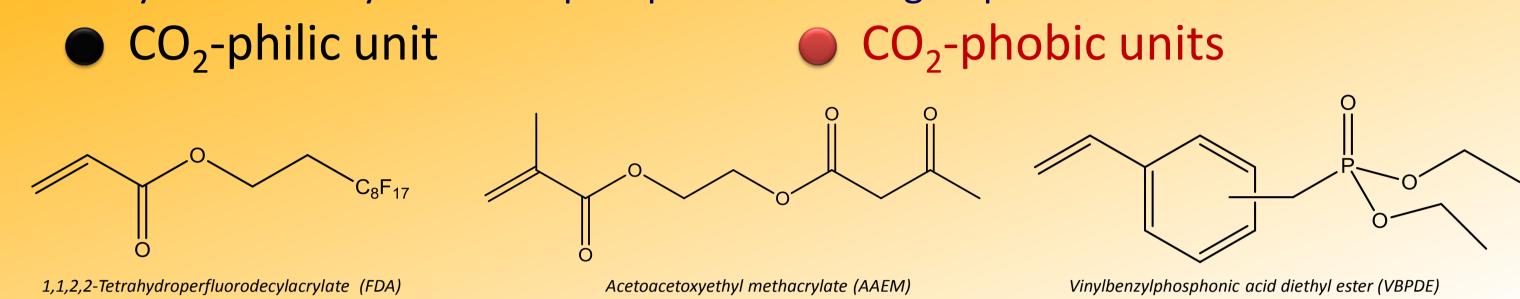


SUPERCRITICAL CO₂-SOLUBLE FUNCTIONAL AMPHIPHILIC FLUORINATED COPOLYMERS AND THEIR PALLADIUM COMPLEXES: SYNTHESIS AND THEIR **USE AS CATALYST**

energie atomique • energies alternatives


Fabien GASC^{1a}, Sébastien CLERC^{1a}, Mathieu CHIRAT^{1a,2}, Eric GAYON^{1b}, Jean-Marc CAMPAGNE^{1b}, Patrick LACROIX-DESMAZES^{1a*} ¹Institut Charles Gerhardt – UMR 5253 CNRS/UM2/ENSCM/UM1, ^aIngénierie et Architectures Moléculaires (IAM), ^bArchitectures Moléculaires et Matériaux Nanostructurés (AM2N), ENSCM, 8 rue de l'Ecole Normale, 34296 Montpellier Cedex 5, France. ²CEA Marcoule, DEN/DTCD/SPDE/Laboratoire des Procédés Supercritiques et de Décontamination (LPSD), BP17171, 30207 Bagnols Sur Cèze, France.

> Introduction

Poly(fluoroalkyl acrylate)s exhibit excellent solubility properties in supercritical carbon dioxide (scCO₂). In the literature, a lot of work^{1,2,3} in scCO₂ has been performed using this type of polymers. We synthesized by RAFT polymerization gradient copolymers from fluoroalkylacrylate and functional monomers to obtain copolymers with special abilities for applications in scCO₂ (extraction, catalysis...).

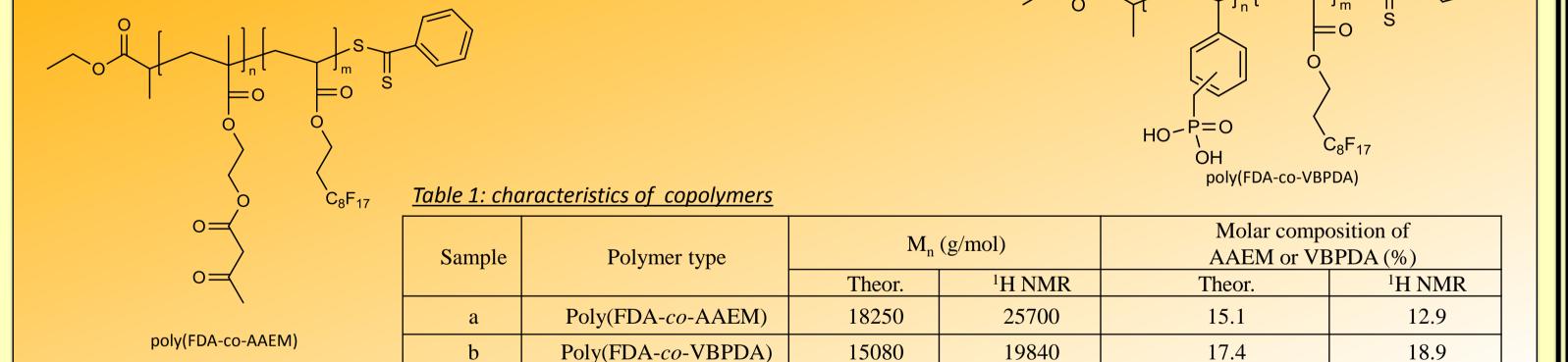
- ✓ Copolymer architecture⁴: gradient > block
- ✓ CO_2 -philic unit: fluoroalkyl acrylate → best solubility in CO_2
- ✓ Functional units: acetoacetoxy or phosphonic acid groups for metal complexation

The CO_2 -philic monomer is composed of a C_8 fluorinated pendant chain. The functional monomers are a commercial methacrylate bearing an acetoacetoxy group and a synthesized styrenic with phosphonic diester group.

→ Copolymerization

Controlled free radical polymerization RAFT was used to synthesize the copolymers

> Copolymer modification


To obtain the phosphonic acid group, a chemical modification has to be performed on the phosphonic diester⁴.

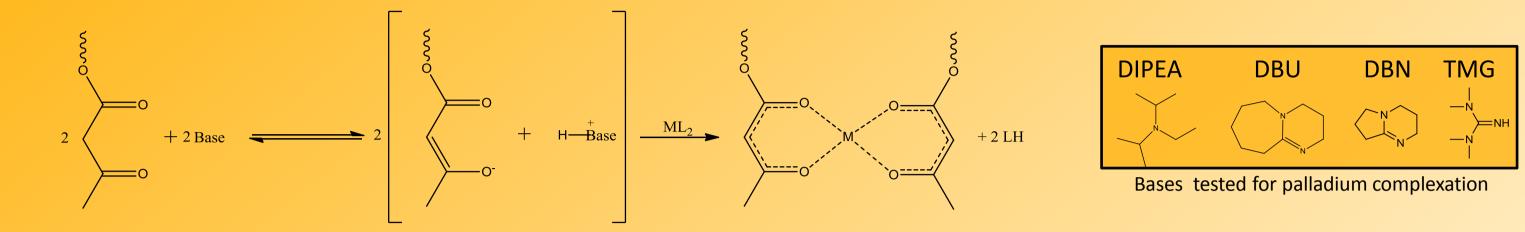
Phosphonic diester -> Phosphonic diacid

Copolymers

The copolymers used in the experiments are the following and were characterized by

The molecular weight determined by ¹H NMR is calculated using the aromatic characteristic peak of the chain-end

+ HI

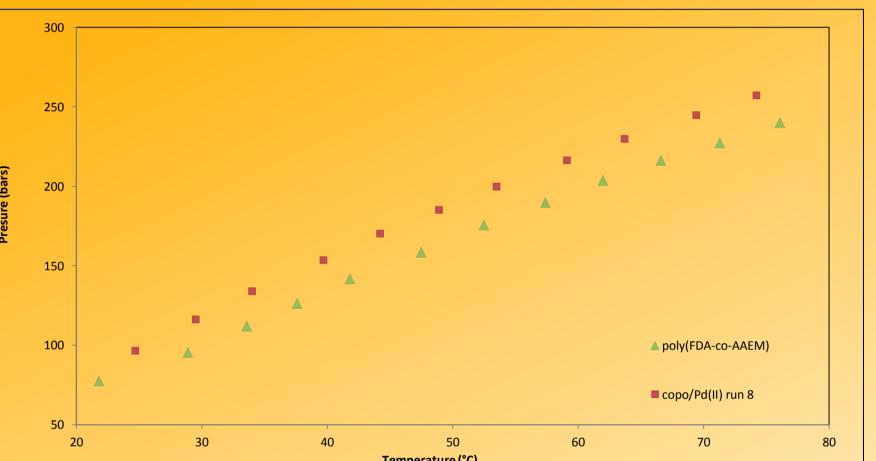

> Copolymer-metal complexes

Copolymers and metals were mixed together to study the complexation properties of the copolymers

Poly(FDA-co-AAEM)-metal complexes

complexation poly(FDA-co-AAEM) + Pd^{II} precursor poly(FDA-co-AAEM)-Pd^{II} complex F113 or CO₂ SC

Complexation of Pd by AAEM with base


Copolymer-Pd^{II} complexes

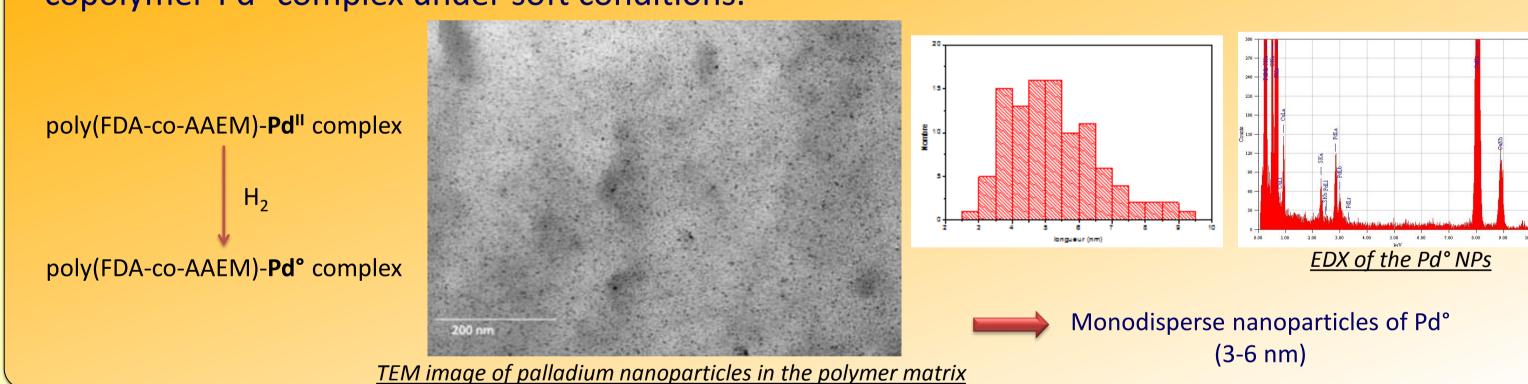
The products were analyzed by ICP-AES to measure the metal content.

Table 2: characteristics of copolymer-Pd complexes

t results were obtained with the use 1,1,3,3-tetramethylguanidine (TMG) case:	Run	Polymer	base	Solvent	[Pd]/[AAEM]	wt% Pd _{th}	wt% Pd _{exp}
	1	poly(FDA-co-AAEM)	-	F113	1/2	1.6	0.9
	2	poly(FDA-co-AAEM)	DBN	F113	1/2	1.6	1.5
	3	poly(FDA-co-AAEM)	DIPEA	F113	1/2	1.6	1.6
	4	poly(FDA-co-AAEM)	-	CO2 SC	1/2	1.4	0.3
	5	poly(FDA-co-AAEM)	DBN	CO2 SC	1/2	1.4	0.3
OAc) ₂ + AAEM + TMG → AAEM-Pd ^{II}	6	poly(FDA-co-AAEM)	DBU	CO2 SC	1/2	1.4	0.4
	7	poly(FDA-co-AAEM)	DIPEA	CO2 SC	1/2	1.4	0.4
	8	poly(FDA-co-AAEM)	TMG	CO2 SC	1/2	1.5	1.1

> Phase diagram of complexes in CO₂

Phase diagrams of products in CO₂ were determined by cloud point pressure measurement at different temperatures at a polymer weight fraction of 4wt% using a setup described in the literature⁵.

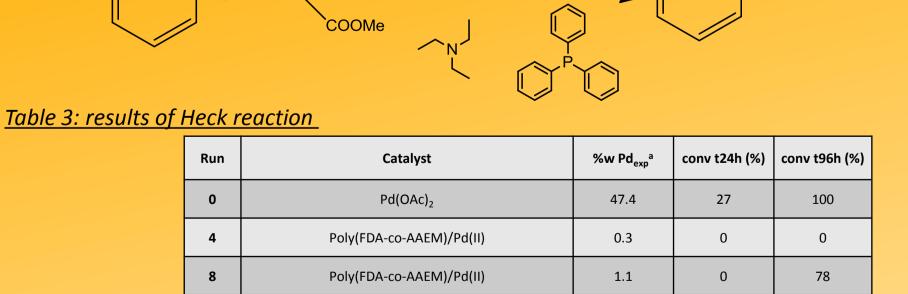


Phase diagram of products based on poly(FDA-co-AAEM) in scCO₂

A small increase of cloud point pressure is observed when the metal is incorporated to the copolymers.

> Reduction of copolymer-Pd^{II} complexes

Pd° nanoparticles incorporated into the copolymer can be obtained by reduction of the copolymer-Pd^{II} complex under soft conditions.

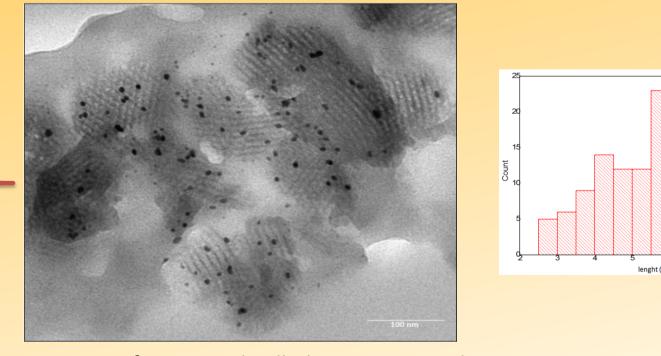


> Applications

Catalytic activity of copolymer-Pd complexes:

Heck reaction

 ^{1}H NMR (using TFT or F113 as solvent and $C_{6}D_{6}$ capillaries for locking).


The product copolymer-Pd^{II} is catalytically active for Heck

78% of reaction yield for the product (run 8) copolymer-Pd

Similar to standard catalyst (Pd(OAc)₂)

Heterogeneous supported catalyst: CO₂-phobic and complexing monome

Copolymer-Pd^{II} complex (run 8) is impregnated into commercial mesoporous silica in scCO₂ media, then reduction is performed under soft conditions.

TEM image of entrapped palladium nanoparticles

Monodisperse nanoparticles of Pd° are obtained into mesoporous silica and this supported catalyst (0.8 wt% Pd) was found to be active in Heck reaction (95% conversion after 48h)

> Acknowledgments and references

- # Laboratoire de métallographie et d'analyses chimiques DEN/DTEC/SGCS/LMAC at CEA Marcoule for ICP-AES and ICP-MS analyses # Eastman for the gift of the AAEM monomer
- # CNRS-CEA grants: CEA 4000402754/P5F62/ CNRS 045079 and n°2006-54
- # Languedoc-Roussillon Region through SUPERPOL project (Chercheur d'Avenir / P. Lacroix-Desmazes, grant n°2010-0-018)
- 1 Lacroix-Desmazes, P.; Andre, P.; Desimone, J. M.; Ruzette, A.-V.; Boutevin, B. J. Polym. Sci., Part A: Polym. Chem. 2004, 42, 3537. 2 Desimone, J. M.; Tumas, W.; Powell, K. R.; McCleskey, T. M.; Romack, T. J.; McClain, J. B.; Birnbaum, E. R.; University, N. C. S., Ed.; (North Carolina State
- University, USA). WO Patent 9,834,967, 2000. 3 Kendall, J. L.; Canelas, D. A.; Young, J. L.; DeSimone, J. M. Chem. Rev. (Washington, D. C.) 1999, 99, 543.
- 4 Ribaut, T.; Lacroix-Desmazes, P.; Fournel, B.; Sarrade, S. J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 5448. 5 Ma, Z.; Lacroix-Desmazes, P. J. Polym. Sci., Part A: Polym. Chem. 2004, 42, 2405.

Charles Gerhardt Montpellier IAM

Conclusion

CO₂-soluble complexing fluorinated gradient copolymers have been successfully synthesized by RAFT polymerization. Pd (1.1 wt%) can be incorporated in these copolymers without a significant change in the solubility properties. The applications of those CO₂-soluble copolymers can be the preparation of innovative materials for catalysis by using these supramolecular systems in a bottom-up approach fully performed in scCO₂ and/or simply by reducing the metal to its zerovalent oxidation state. This type of materials are active in catalysis for the Heck reaction.

