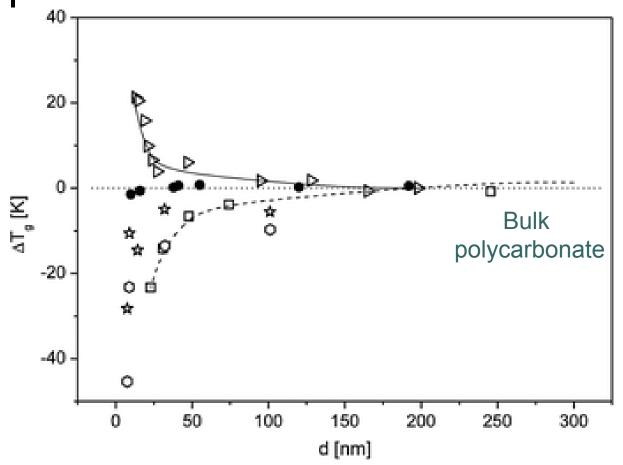


Journée V2P

Graphene & Nanocomposites

J.F. GERARD
Ingénierie des Matériaux Polymères
UMR CNRS #5223

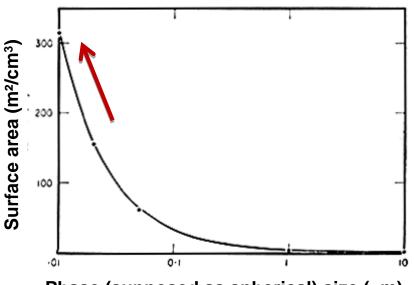

Université de Lyon – INSA Lyon jean-francois.gerard@insa-lyon.fr

WHY NANOCOMPOSITES?

New physical behaviour from nanoscale

H. Yin & A. Schönhals Soft Matter, 2012

Confinement effects on molecular dynamics


Nanoscale comparable to radius of gyration in polymers

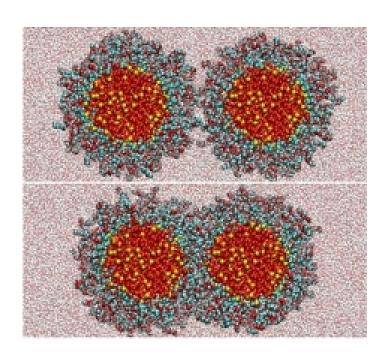
WHY NANOMATERIALS?

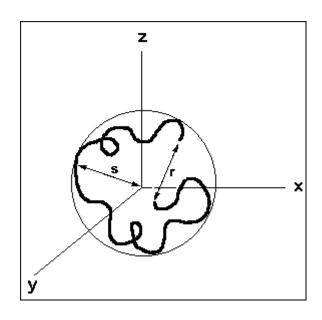
Interface vs. Interphase

P.J. Sereda and R.F. Feldman, CNRC-NRC CA (2011)

Developed interfacial area between phases as a function of size

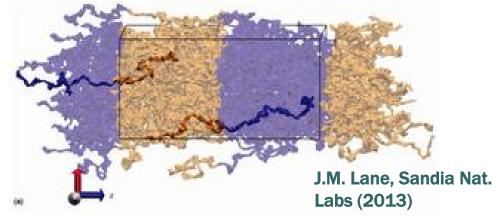
Phase (supposed as spherical) size (μm)


Nanomaterials vs. Micromaterials


Polymer chains in interaction between phases

All is interface!

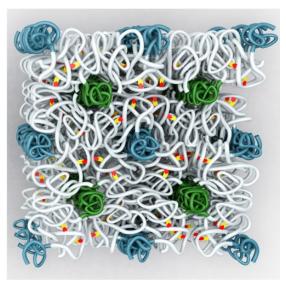
WHY NANOCOMPOSITES?



Interphases from changes of segmental Mobilities

Interphase dimension vs. phase sizes

WHY NANOCOMPOSITES?



'Self-assembly' of Nano-objects/Nanofillers

In-situ generation of structures at nanoscale (percolated, oriented, etc)/ Morphology

S.B. Darling, Prog. Polym. Sci (2007)

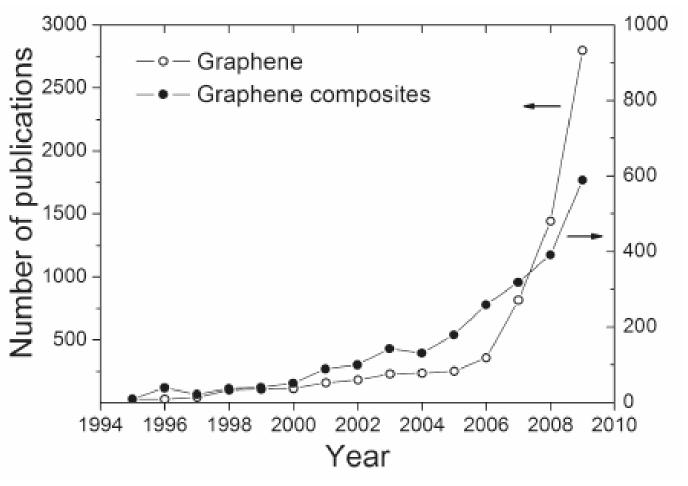
Large influence of the spacial arrangement and assembling of nanofillers on nanocomposite behaviours (mechanical, electrical, barrier, optical, ...) Combination with other approaches for tailoring at larger scales

- -Balance between particle-particle and particle-polymer matrix interactions:
- -management of interfacial interations
- -Processing conditions : applied shear stresses, etc ... (shape factor)

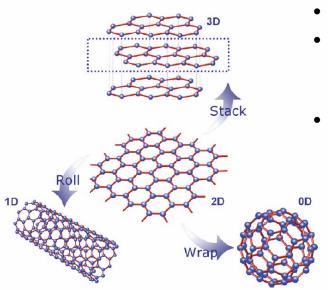
CONTENTS

2.- Processing Graphene-Based Nanocomposites

3.- Expected Graphene-Based Nanocomposites


4.- Conclusions

GRAPHENE 'FASHION'


Kim & C.W. Macosko, Macromolecules (2010)

GRAPHENE AS A NANOFILLER

- atomically thick
- two-dimensional (2-D) sheet (sp2 carbon atoms/ honeycomb)
- building block of all other graphitic carbon allotropes of different dimensionality

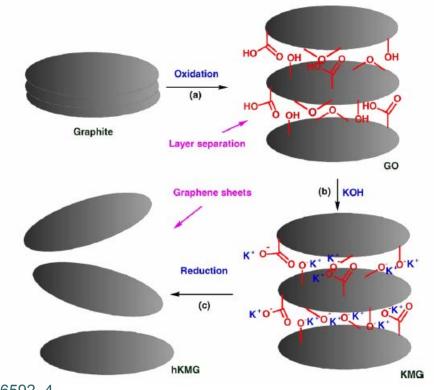
Eizenberg, M.; Blakely, J. M. Surf. Sci. 1970

X. Wan, Accounts of Chemical Research (2012)

Materials	Tensile strength	Thermal conductivity (W/mk) at room temperature	Electrical conductivity (S/m)
Graphene	130 ± 10 GPa	$(4.84 \pm 0.44) \times 10^3$ to $(5.30 \pm 0.48) \times 10^3$	7200
CNT	60-150 GPa	3500	3000-4000
Nano sized steel	1769 MPa	5-6	1.35×10^{6}
Plastic (HDPE)	18-20 MPa	0.46-0.52	Insulator
Rubber (natural rubber)	20-30	0.13-0.142	Insulator
Fiber (Kevlar)	3620 MPa	0.04	Insulator

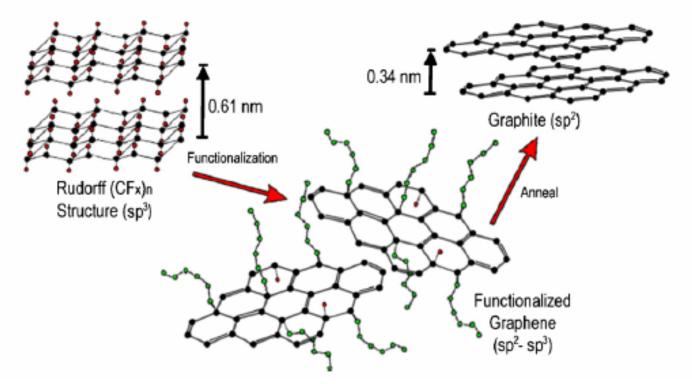
High surface area (theoretical): 2,630 m²/g)

T. Kuilla et al., Progress Polym. Sci. (2010)


REQUIRED SURFACE FUNCTIONALIZATION?

Improvement of the solubility for further processing Enhancement of the interactions with organic polymers

- Amination
- Esterification
- •Isocyanate-funct.
- Polymer wrapping
- Ionic liquids

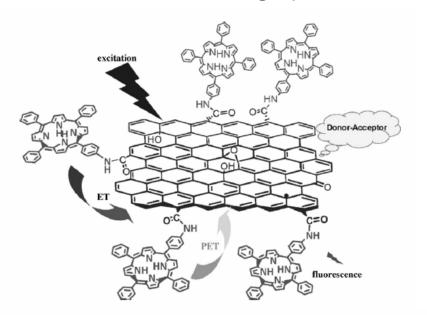

Reduction of graphite oxide (GO) in a stabilization medium.

Park S. et al. Aqueous, suspension and characterization of chemically modified Graphene sheets. Chem Mater 2008;20:6592–4.

Covalent modification of graphene.

Amide coupling reaction between the carboxyl acid groups of graphene oxides and octadecylamine (ODA).

A.A. Worsley; Chem. Phys. Lett. (2007)



REQUIRED SURFACE FUNCTIONALIZATION?

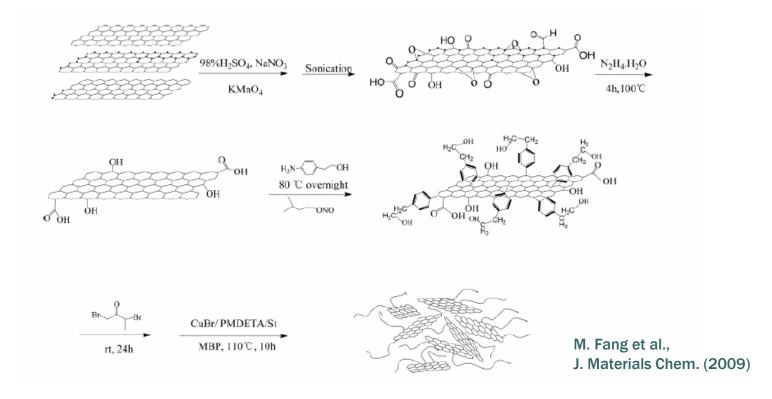
Covalent modification of graphene.

Covalent attachment of a porphyrin ring on the GO surfaces (Thionyl chloride used to activate the carboxylic acid group in the presence of porphyrin using DMF as a solvent).

X.Y. Liu et al, Adv. Mater. (2009)

Isocyanate-modified graphene oxide: stable colloidal dispersion in all polar aprotic solvents, DMF, NMP, DMSO, hexamethylphosphoramide (HMPA).

S. Stankovich et al, Carbon (2006)



GRAPHENE DISPERSION IN POLYMER MATRICES

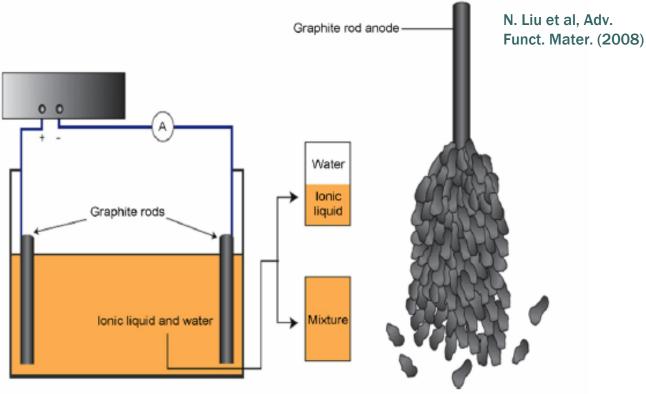
Grafting from polymerization for modification of graphene

Atom transfer radical polymerization (ATRP)

- r-GO treated with 2-(4-aminophenyl) ethanol and isoamyl nitrite (diazonium functionalization)
- modified r-GO reacted with 2-bromopropionyl bromide to be used as the initiator for styrene polymerization

REQUIRED SURFACE FUNCTIONALIZATION?

Electrochemical modification of graphene



Hydrophilic-to-hydrophobic reversible switching of graphene sheets by simply exchanging the anions associated with polymeric ionic liquids (PIL)

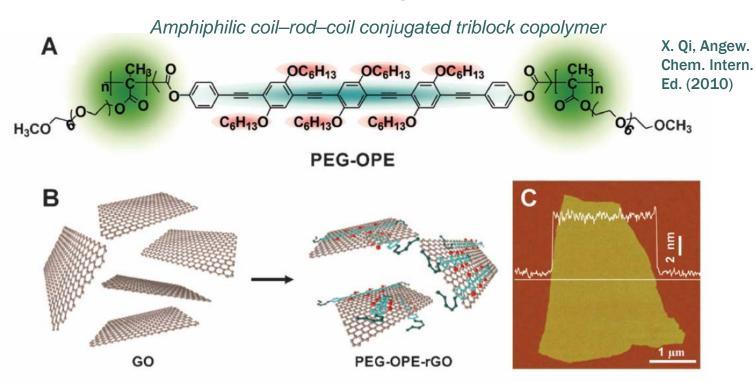
H. Kim et al, Chem. Mater. (2010)

Electrochemical modification of graphene

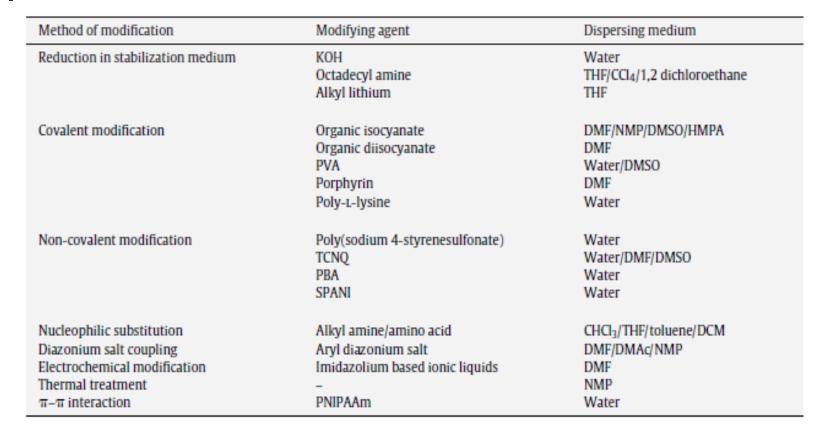
water and imidazolium-based ionic liquids

Ultrasonication of dried GNPIL in DMF

⇒ homogeneous dispersion



REQUIRED SURFACE FUNCTIONALIZATION?

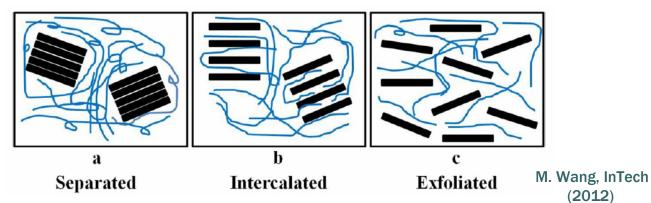

Non-covalent functionalization from van der Waals force, electrostatic interaction or π – π stacking

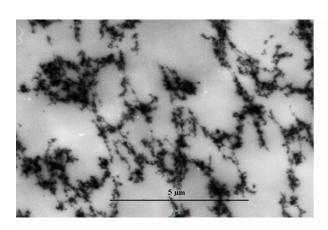
(PEG–OPE) to improve the solubility in both high and low polar: conjugated rigid-rod backbone of PEG–OPE bound to the basal plane of the in situ reduced GO via the π - π interaction, whereas the lipophilic side chains and two hydrophilic coils of the backbone form an amphiphilic outer-layer surrounding the rGO sheet (solubility organic low polar (such as toluene and chloroform) and water-miscible high polar solvents (such as water and ethanol).

Numerous methods for graphene modification

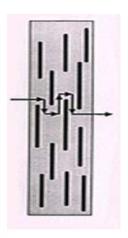
Methods

Conditions




Yield and properties Bottom-up approaches CVD Carbon sources: CH₄, H₂ Sheet size of up to a few tens of micrometres. Substrate: Ni, Ru, Cu Temperature: 1000 °C PECVD Carbon source: CH₄, H₂ Large area of more than 1 cm of monolayer Substrate: Cu graphene Temperature: 650 °C Graphitization Substrate: 6H-SiC(0001) Grain size: up to 50 µm long, 1 µm wide Temperature: 1280 °C Solvothermal Reagents: Na and ethanol Folded graphene structures Bulk conductivity: ~0.05 S m⁻¹ Temperature: 220 °C Organic synthesis Thermal fusion of polycyclic aromatic For a 30 nm thick film on quartz, conductivity: $20\,600~\mathrm{S}~\mathrm{m}^{-1}$, sheet resistance: $1.6~\mathrm{k}\Omega~\mathrm{m}^{-2}$ hydrocarbons at 1100 °C Top-down approaches Single-layer yield: 7-12 wt% after purification Liquid exfoliation of Intercalate: NMP Film conductivity: ~6500 S m⁻¹ graphite Intercalate: SDBS Film conductivity: $\sim 35 \text{ S m}^{-1}$ Single-layer yield: $\sim 3\%$ with a size of $\sim 1 \, \mu m$ Graphene ribbons with lengths of $\sim 40 \mu m$. Intercalate: ternary potassium salt Thermal exfoliation and Thermal exfoliation at 1000 °C Single-layer yield: ∼90% after purification Intercalates: oleum and TBA liquid intercalation Size: $\sim 250 \text{ nm}$ Resistance of single sheet with 100 nm in width: $10-20 \text{ k}\Omega$ Electrochemical 1-Octyl-3-methyl-imidazolium hexafluoro-Sheet size: $500 \times 700 \text{ nm}$ exfoliation phosphate as electrolyte; graphite rods as electrodes Sheet resistance of graphene paper: 7200 S m⁻¹ Chemical reduction Reduction agent: hydrazine Incomplete removal of oxygen-containing groups of GO Deoxygenation agent: KOH or NaOH Temperature: 50–90 °C Reduction agent: bovine serum albumin To be used as template for nanoparticle synthesis Film conductivity: up to 7700 S m⁻¹ Reduction agent: vitamin C Temperature: 95 °C Film resistance decreased up to 10⁴ after reduction Reduction via bacteria respiration Reduction agent: hydriodic acid and acetic acid Sheet resistance: pellets dried after solution reduction: 30 400 S m⁻¹ Thin film after vapor reduction: 7850 S m⁻¹ In solution at room temperature or in vapor at 40 °C Sonolytic reduction: ultrasonication at 211 kHz Formation of 1–4 layers of rGO for 30 min Microwave-assisted reduction in the presence of Formation of 1-8 layers of rGO with size up to a hydrazine few micrometres Thermal reduction 220 °C in air for 24 h Film sheet resistance: $8 \text{ k}\Omega \text{ sq}^{-1}$ Film resistance: 6 kΩ of GO 150 °C in DMF for 1 h Photothermal reduction High pressure Hg lamp with H₂ or N₂ flow Sheet size: ~1 um Single-sheet conductivity: 2000-20000 S m⁻¹ of GO Pulsed xenon flash Able to prepare a GO/rGO patterned film with a photomask Sheet resistance of rGO area: $\sim 9.5 \text{ k}\Omega \text{ sq}^{-1}$

X. Huang et al, Chem. Soc. Rev. (2012)


Layered nanofillers in polymer matrices

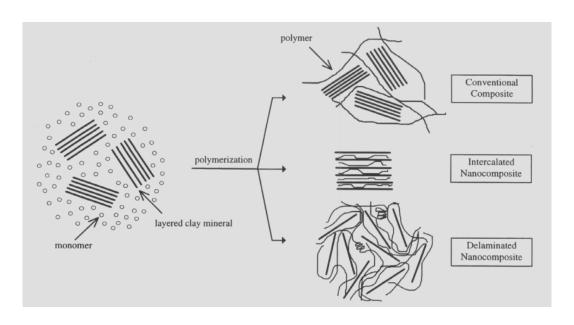
Morphology needs to be designed from the expected behaviour

Generation of nanofiller network (percolation)

Ordered / Individual nanofillers



Similar routes as layered silicate-based nanocomposites processing



Numerous polymer matrices

Epoxy, PMMA
Polypropylene, LLDPE, HDPE, polystyrene, PPS], polyamide
Polyaniline, phenylethynyl-terminated polyimide
Silicone rubber

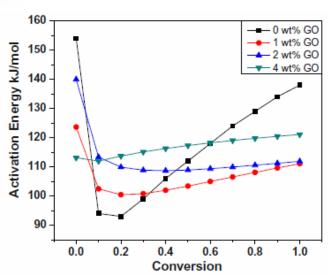
Nanocomposites processing via in-situ polymerization

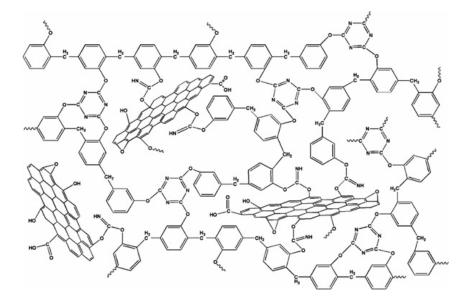
Berlung (1999)

Large variety of polymer nanocomposites:

Polystyrene,. poly(methyl methacrylate), polystyrene sulfonate (PSS), polyimide (PI), poly(ethylene terepthalate) (PET), etc

Epoxy-amine, polyurethane (OH/NCO), etc

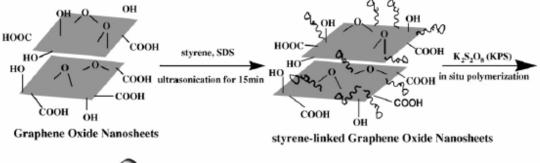

Nanocomposites processing via in-situ polymerization

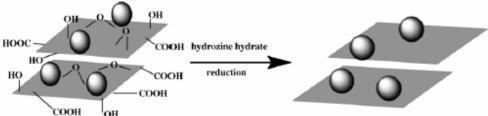

- . Influence of the presence of graphene nanosheets on polymerization Catalytic effect of free hydrogen species, bonding, ...
- . Influence on gelation time (polymer networks)

Cyanate ester / graphene

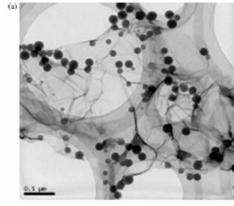
X. Wang et al, Europ. Polym. J. (2012)

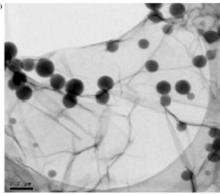
Crosslinked network formation through triazine ring and -O-(C=NH)-O- bond for the PT-30/GO nanocomposites





GRAPHENE DISPERSION IN POLYMER MATRICES


Nanocomposites processing via in-situ emulsion polymerization



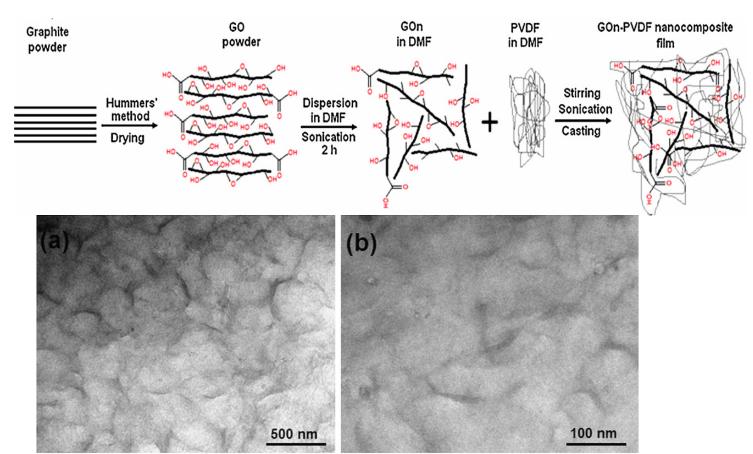
Graphene Oxide Nanosheets polystyrene microspheres Graphene Nanosheets-polystyrene microspheres

J. Lianga et al., Carbon (2009)

Solution-based nanocomposites processing

Graphene or modified graphene dispersed in a suitable solvent, such as water, acetone, chloroform, tetrahydrofuran (THF), dimethyl formamide (DMF) or toluene, owing to the weak forces that stack the layers together.

Solvent removal as a critical step for processing

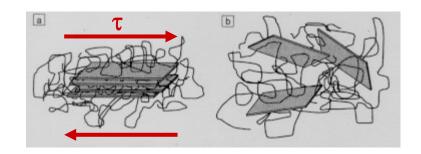

Driving force for polymer intercalation from solution is the entropy gained by the desorption of solvent molecules, which compensates for the decrease in conformational entropy of the intercalated polymer chains.

Synthesis of intercalated nanocomposites based on polymers with low or even no polarity.

maleic anhydride grafted polyethylene (PE-g-MA), epoxy, PS, polypropylene (PP), poly(vinyl alcohol) (PVA), poly(vinyl chloride) (PVC), ethylene vinyl acetate (EVA)

Solution-based nanocomposites processing

PVDF-graphene nanocomposites



Nanocomposites melt processing

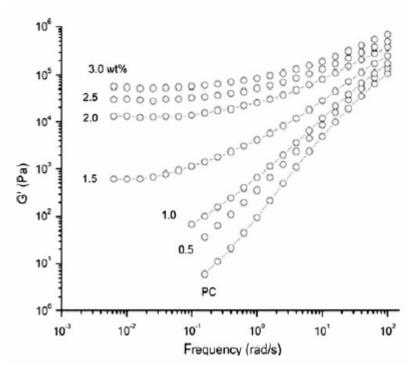
Applying

shear

Dispersion tools (high viscosity medium)

Twin-screw extrusion

Large dependence of morphology with the tool used


Thermoplastic matrices such as PP/EG, HDPE/EG, PPS/EG, PA6/EG, etc.

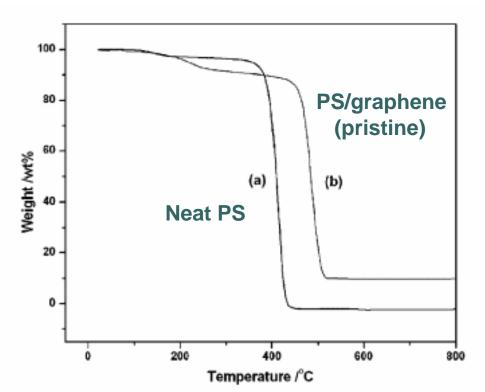
Nanocomposites melt processing

Polycarbonate/ Graphene @ 210°C

B. Li et al., J. Mater. Sci. (2011)

Large increase of the molten state viscosity with increasing graphene volume fraction and state of dispersion

⇒ Processing using conventional tools (extrusion, injection, ...)...



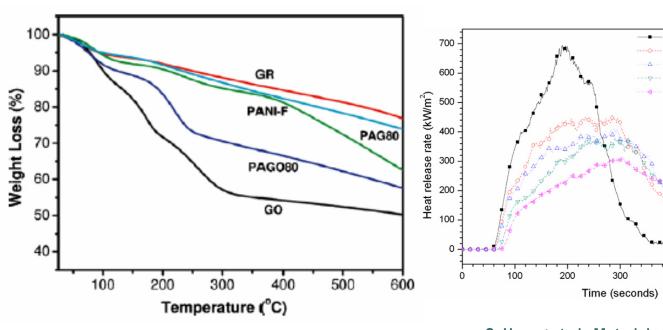
GRAPHENE-BASED NANCOMPOSITES Thermal stability

PS/graphene nanocomposites under N₂ atmosphere

N. Liu et al, Adv. Funct. Mater. (2008)

Hindering segmental motions of polymer chains via

- mechanical interlocking
- hydrogen bonding with surface oxygen functionalities


GRAPHENE-BASED NANCOMPOSITES Thermal stability

H. Zhang et al., Electrochim. Acta (2009)

G. Huang et al., Materials Chemistry and Physics (2012)

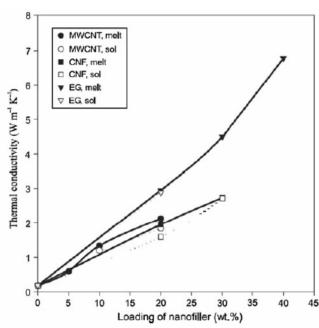
EVA resin

0.5 wt% CRG 1.0 wt% CRG

0.5 wt% CRG-PPSPB 1.0 wt% CRG-PPSPB

500

600


During combustion, inflammable anisotropic nanoparticles form a jammed network of char layers that retards transport of the decomposition products.

GRAPHENE-BASED NANCOMPOSITES Thermal behaviour

Thermal conductivity

⇒ Processing

PEI nanocomposites

S. Goshe et al., High Perf. Polym. (2006)

Dimensional stability

⇒ CTE, HDT

Polymer	Types of GNPs	Concentration of GNP	Increase of To (°C)
PVA	GNP	5 wt%	45
PMMA	GNP	5 wt%	35
PMMA	As-received graphite	5 wt%	20
PLA	Exfoliated graphite	3.0 wt%	14
PANI	GNP	N/A	40
Flouroelastomer	GNP	7 phr	7
PS	GIC-220N	5 wt%	80
HIPS	GIC-220N	5 wt%	None
ABS	GIC-220	5 wt%	10
Nylon-6	Foliated graphite	5 wt%	24

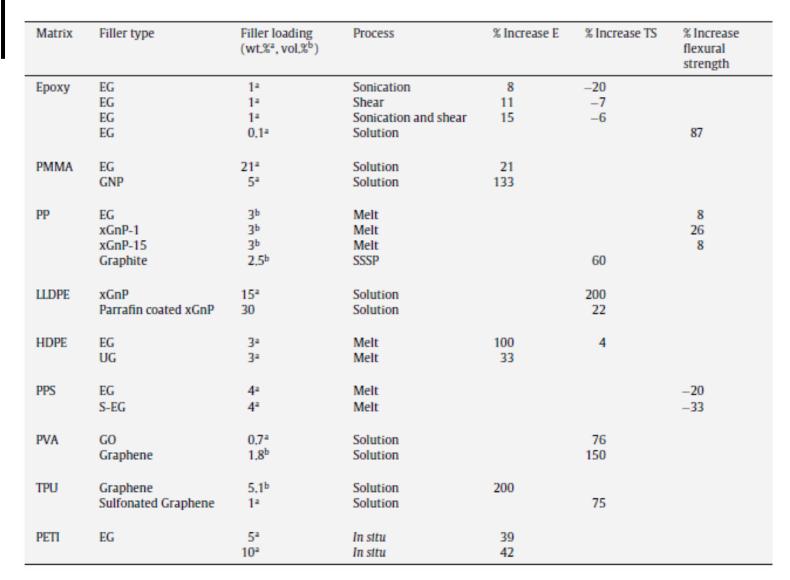


Table 4. Mechanical Properties of Graphene/Polymer Nanocomposites

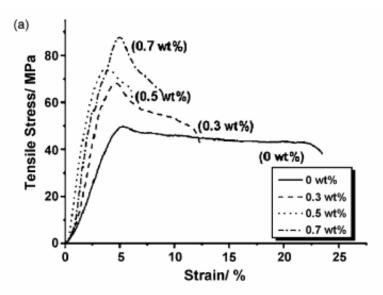
polymer ^a	reinforcements	processing	E _{matrix} (MPa)	graphene concentration (vol %)	modulus increase (%)	tensile strength increase (%)	ultimate stra increase (%
PVA	GO	solvent	2100	2.5	128	70	32
PVA	GO	solvent	2130	$(0.49)^b$	62	76	-70
PMMA	GO	in situ polymerization	520°	(1.7)	54 ^c	N/A	N/A
PCL	GO	solvent	340	(2.4)	108	36	-90
PCL	GO	solvent	260	(0.46)	50	N/A	N/A
epoxy	TRG	in situ polymerization	2850	(0.05)	31	40	N/A
PEN	TRG	melt	2350	2.4	57	N/A	N/A
PC	TRG	melt	2080	1.3	25	N/A	N/A
PMMA	TRG	solvent	2100	(0.005, 0.5)	33, 80	N/A	N/A
PVDF	TRG	solvent	1280	(3.1)	92	N/A	N/A
SAN	TRG	solvent + melt	2350	(2.3)	34	N/A	-58
PC			1480	(2.5)	52	N/A	-98
PP			980	(1.9)	43	N/A	-99
PA6			1650	(2.4)	32	N/A	-94
natural rubber	TRG	solvent/melt	1.3	(1.2)	750	N/A	N/A
PDMS		in situ polymerization	0.6	(2.2)	1100	N/A	N/A
styrene- butadien rubber	e		10	(0.8)	390	N/A	N/A
TPU	TRG	solvent	458	(1.5)	43	-23	-15
silicone foam	TRG	in situ polymerization	250^{d}	(0.12)	200^{d}	N/A	N/A
PVA	acid functionalized TRG	solvent	660	(0.4)	35	N/A	N/A
PMMA	amine treated, acid functionalized TRG		2120	(0.3)	70	N/A	N/A
TPU	TRG	melt	6.1 - 7.1	1.6	250	N/A	N/A
		solvent		1.6	680	N/A	N/A
		in situ polymerization		1.5	210	N/A	N/A
	iGO	solvent		1.6	490-900	N/A	N/A
PS	PS-functionalized, chemically reduced GO	solvent	1450	(0.4)	57	N/A	N/A
TPU	chemically reduced sulfonated-graphene	solvent	9.8	(0.5)	120	75	N/A
TPU	GO	solvent	6	(2.4)	900	-19	-60
PAN	exfoliation of alkali intercalated graphite	electrospinning, solvent	2450	(2.1)	100	N/A	N/A

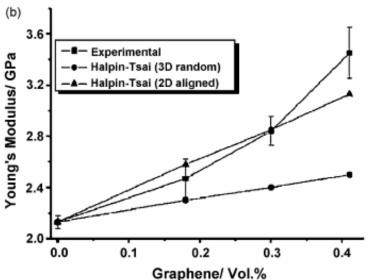
C.W. Macosko, Macromolecules (2010)

Large increase of Young's modulus

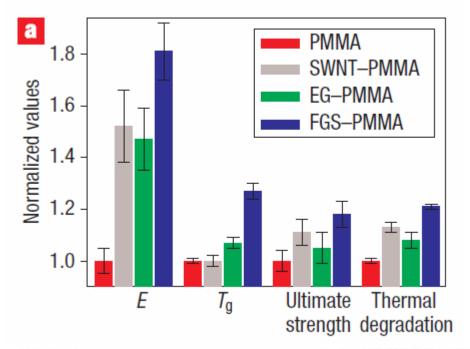
PMMA 33% improvement for 0.01 wt %

Ramanathan, T et al., Nature Nanotechnol. 2008

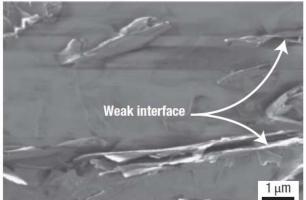

Epoxy 31% increase for 0.1wt %

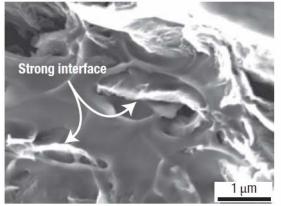

Rafiee, M.A et al., ACS Nano 2009

⇒strong hydrogen-bonding interaction of oxygen-functionalized graphene (thermally reduced graphene oxide)
⇒mechanical interlocking at the wrinkled surface that may restrict segmental mobility of polymer chains near TRG surfaces



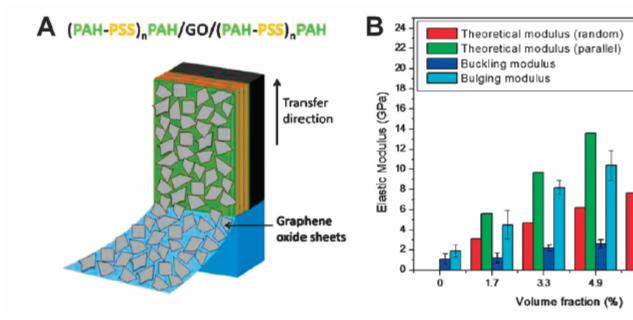
J. Liang et al, Adv. Funct. Mater. (2009)


PVA / graphene nanocomposites


Role of the interface

PMMA / graphene nanocomposites

T. Ramanathan et al., Nature Nanotechnology (2008)



GRAPHENE DISPERSION IN POLYMER MATRICES

D.D. Kulkarni et al, ACS Nano (2010)

Layer-by-layer (LbL) assembling via the Langmuir–Blodgett (LB) technique to deposit GO sheets onto films of polyelectrolyte poly(allylamine hydrochloride) (PAH) and poly(sodium 4-styrene sulfonate) (PSS) multi-layers

Matrix	Filler	Filler loading (wt,%a, vol,%b)	Process	σ (S m ⁻¹) of matrix	σ (S m ⁻¹) of composit
Epoxy	EG	3,002	Sonication	1E-13	1E-4
	EG	2,50 ^b	Solution	1E-15	1E-2
	Graphene	0,52 ^b	Solution	1E-10	1E-2
PMMA	NanoG	0.68 ^b	In sttu	1E-13	1E-3
	EG	1.00 ^a	Solution	1E-15	1E-3
	EG	10 ²	In sttu	-	77.65
PS	NanoG	1.002	In sttu	1E-14	1E-4
	Graphene	0.10 ^b	Solution	1E-16	1E-5
	GNS ^{C4P}	0,40 ^b	Solution	1E-14	1E-5
	GNS ^{C4P}	0.10 ^b	Solution	1E-14	4
	GNS ⁸⁸	0.20 ^b	Solution	1E-14	1E-5
	GNS ^{5D}	0.30 ^b	Solution	1E-14	1E-5
	Graphene	_	Solution	1E-16	24
	Graphene	2.0 ^a	In sttu	1E-10	1E-2
	EG .	1.50 ^b	In sttu	1E-16	1E-4
	K-GIC	8,20ª	Solution	NA	-
Nylon-6	EG	1.50 ^b	In sttu	1E-15	0.1
	FG	0.75 ^b	In sttu	1E-15	1E-5
PP	xGnP-1	3.00 ^b	Coating	1E-12	0.1
	xGnP-1	3,00 ^b	Solution	1E-12	1E-2
	xGnP-15	7,00 ^b	Melt	1E-12	1E-3
	xGnP-15	5.00 ^b	Coating	1E-12	0.1
	EG	0,67 ^b	Solution	1E-16	0.1
HDPE	EG	3.00 ^a	Melt	1E-16	1E-8
	UG	5,00ª	Melt	1E-16	1E-10
PPS	EG	4.0 ^a	Melt	1E-12	1E-3
	S-EG	4.0°	Melt	1E-12	1E-2
PANI	Graphite	1.5ª	In sttu	5.0	3300,3
	GO	-	In sttu	2,0	1000
PVDF	FGS	2.0 ^a	Solution	1E-11	1E-2
	EG	5,0°	Solution	1E-11	1E-3
PVA-S	NanoG	0.2ª	Solution	1E-13	1E-3
PET	Graphene	0.47 ^b	Melt	1E-14	7.4E-2
Polycarbonate	FGS	2.0ª	Melt	1E-14	1E-9
	Committee	12	3.6-14	1F 14	C CF 11

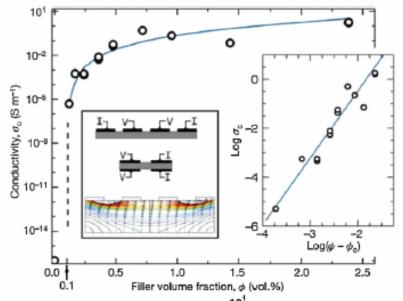
Melt

6.6E - 11

T. Kuilla et al., Progress Polym. Sci. (2010)

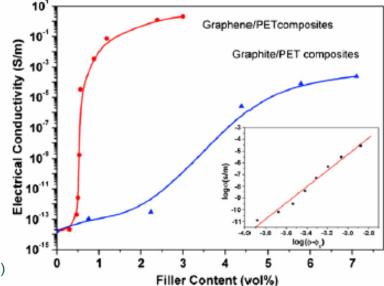
Graphite

12



Critical phenomena around the percolation threshold:

$$\sigma_m = \sigma_h (\phi - \phi_c)^t$$


Antistatic criterion (10⁻⁶ Sm⁻¹)

Polystyrene / graphene

S. Stankovich et al., Nature (2006)

B.I. Halperin et al., Phys. Rev. Lett. (1985)

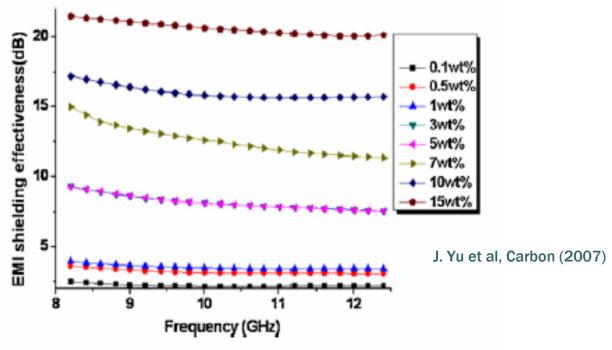


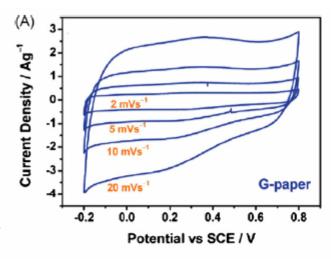
Table 3. Electrically Conductive Graphene/Polymer Nanocomposites

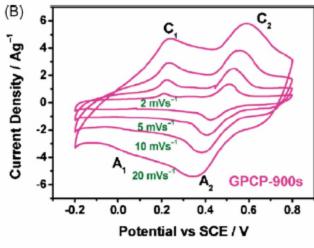
polymer ^a	graphene type	processing	electrical percolation threshold (vol %)			
chemically modified						
PS	iGO^b	solvent blending + hydrazine	0.1			
vinyl chloride/vinyl acetate copolymer	GO	solvent blending + hydrazine	0.15			
PS	electrochemically exfoliated graphite	solvent blending + ionic liquid	0.13-0.37			
epoxy	partially reduced GO	in situ polymerization at 250 °C	0.52			
PMMA	GO (17 mol % O)	in situ polymerization	$(1.3)^c$			
PMMA	GO (12 mol % O)	in situ polymerization	(1.6)			
		thermally exfoliated				
TPU	TRG, $\sim 800 \mathrm{m^2/g}$, 4 mol % oxygen	solvent blending	0.3			
		in situ polymerization	0.4			
		melt compounding	0.8			
PEN		melt compounding	0.5			
PC		melt compounding	0.6			
natural rubber	>600 m ² /g, 5 mol % oxygen	melt or solvent blending + vulcanization	(0.8, solvent blend), (>2.0, melt blend)			
PS-PI-PS		melt or solvent blending	(0.6)			
PDMS		oligomer blending + polymerization	(0.6)			
TPU	apparent specific volume: 410 cm ³ /g,	solvent blending	(1.0)			
TPU	5 mol % oxygen	colvent blanding	(1.0)			
TPU		solvent blending in situ polymerization	(1.0)			
PVDF	_	solvent blending	(1.6) (1.6)			
SAN	600-950 m ² /g, up to 14 mol % oxygen	preblending using solvents, followed by melt compounding	(1.9)			
PC		Table was of more compounding	(1.3)			
PP			(2.0)			
PA6			(3.8)			

Electromagnetic interference (EMI) shielding

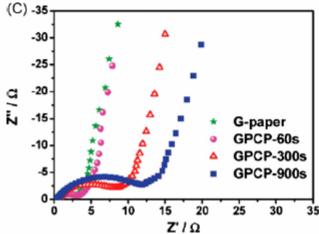
EMI shielding effectiveness increased with increasing graphene loading, attributed to the formation of a conducting interconnected graphene-based sheet network in the insulating epoxy matrix.

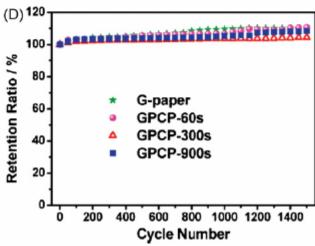
Effective light weight shielding materials for electromagnetic radiation.





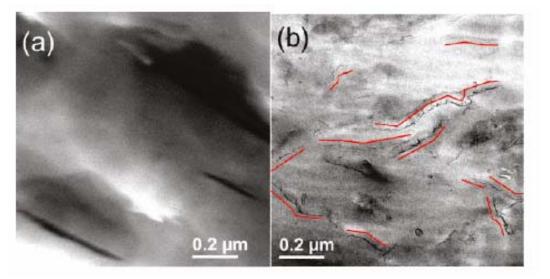
In-situ electropolymerization of aniline





Cyclic voltametry

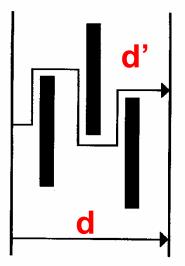
GP, only one pair of redox peaks due to the transition between quinone/hydroquinone groups. GPCP, two couples of redox peaks indicating the presence of pseudocapacitive PANI.


I. Peponi et al., J. Phys. Chem. (2009)

polymer	filler	processing	permeant	relative reduction (%)	graphene loading (vol %)
PEN	TRG	melt	hydrogen	44	1.8
PC	TRG	melt	helium	32	1.6
			nitrogen	39	1.6
TPU	TRG	melt	nitrogen	52	1.6
		solvent	nitrogen	81	1.6
		in situ polymerization	nitrogen	71	1.5
	iGO	solvent	nitrogen	94-99	1.6
	GO	in situ polymerization	nitrogen	62	1.5
natural rubber	TRG	melt/solvent/oligomer polymerization	air	60	1.7
PS-PI-PS		, , , , , , , , , , , , , , , , , , , ,		~80	2.2
PDMS				~80	2.2

Defect-free graphene sheets are impermeable to all gas molecules.

UJM Injeniera au Mainlaik Palymers

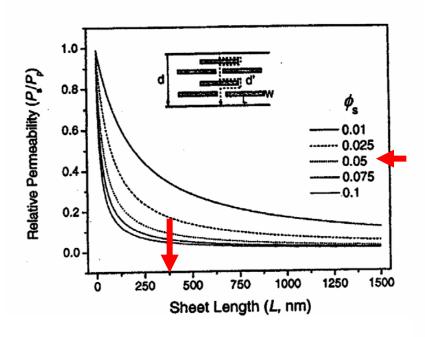

Tortuosity τ

$$\tau = d'/d = 1 + \Phi_s L/2 w$$

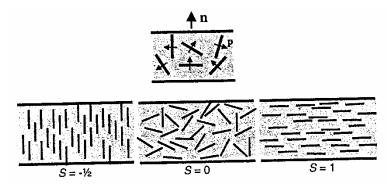
sheet dimensions

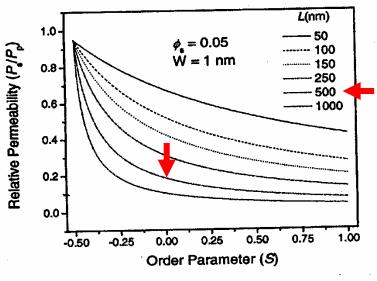
L length w thickness

Volume fraction of nanosheets Φ_s

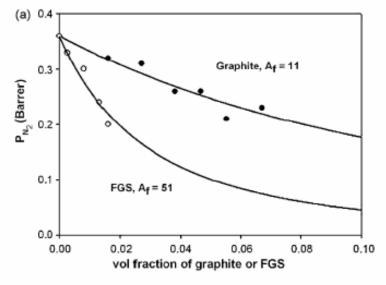

Tortuosity effect on gas permeability

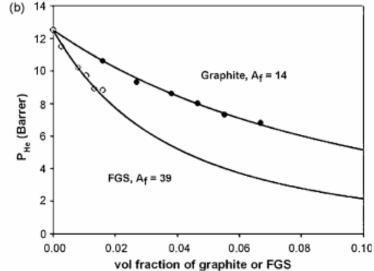
$$P_s / P_p = 1 - \Phi_s / \tau$$



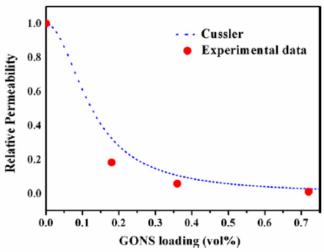


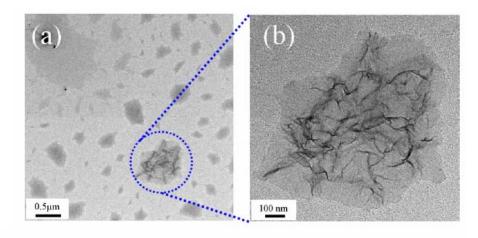
Strong dependence of gas barrier properties with processing conditions

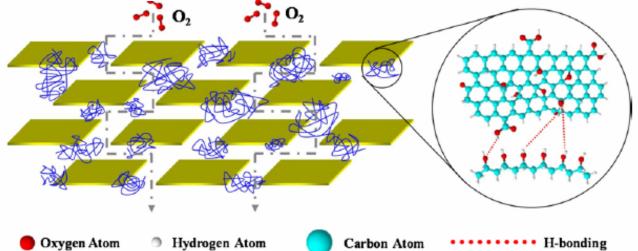



Bharadwaj, Macromolecules (2001)

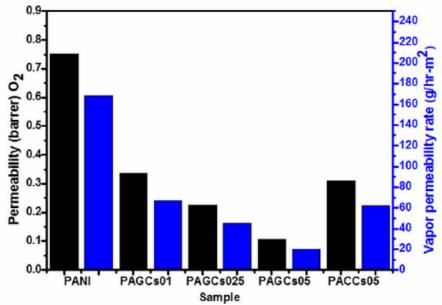
N₂ and He permeation PC/graphite and PC/FGS (functionalized graphite sheets) nanocomposites composites at 35 °C

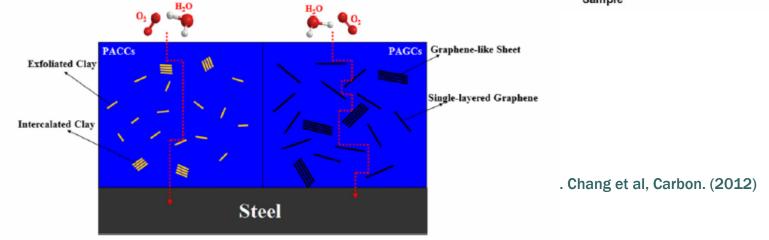



H. Kim & C.W. Macosko, Polymer (2009)



Tortuosity effect on gas path





Polyaniline/graphene nanocomposites as protective coatings (anticorrosion)

MAIN CONCLUSIONS

multifunctional nanofiller

electrical, thermal, mechanical, gas barrier

acting from the same basic features as other nanofillers.

Graphene can provide a combination of the benefits achieved with layered silicates (gas permeation barrier and stiffness) and carbon nanotubes (electrical and thermal conductivity).

