
Organocatalyzed Ring Opening Polymerization of Cyclic Butylene Terephthalate Oligomers

Rong TANG, Jean-Jacques ROBIN, Julien PINAUD

Institut Charles Gerhardt Montpellier, UMR 5253, CNRS-UM-ENSCM, Equipe Ingénierie et Architectures Macromoléculaires,

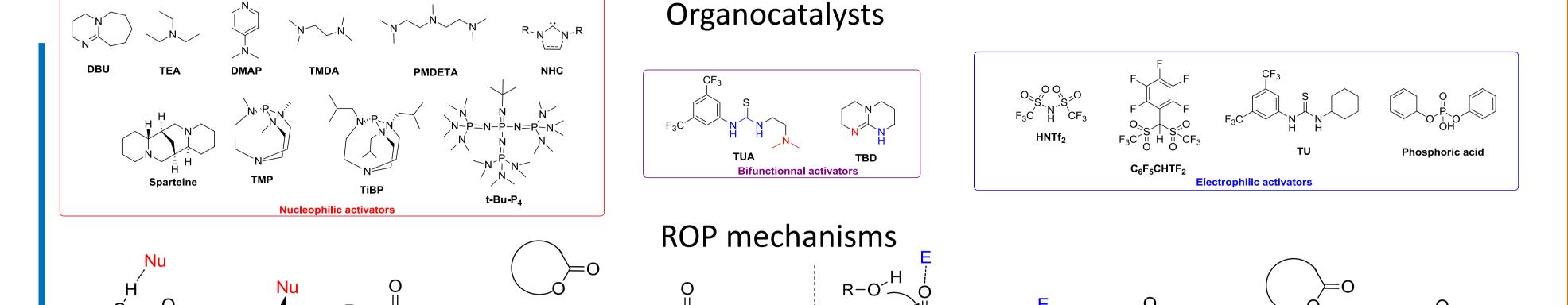
Université Montpellier, Bat17 – cc1702, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France

All about Cyclic Butylene Terephthalate Oligomers (CBT®)¹

CBT®:

- Tm = 120-160°C
- Low Melted state viscosity (17 mPa.s)
- Polymerized by ROP in 3-5 min with no by-products

PCBT = PBT:

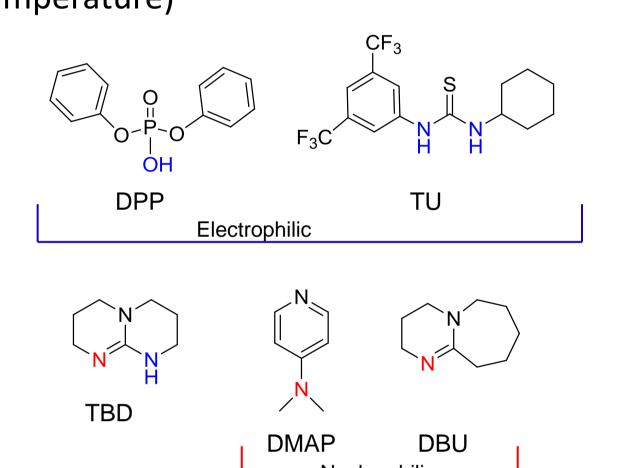

- High Tm polymer (Tm = 220°C)
- Fast-crystalizing polymer
- Recyclable

Suitable matrix for engineering thermoplastic composites processed by impregnation

¹ Tripathy AR, Elmoumni A, Winter HH and MacKnight WJ, Macromolecules, 2005, 38, 709–715.

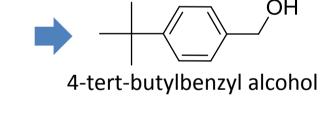
Context

Organocatalyzed Ring-Opening Polymerization (ROP)

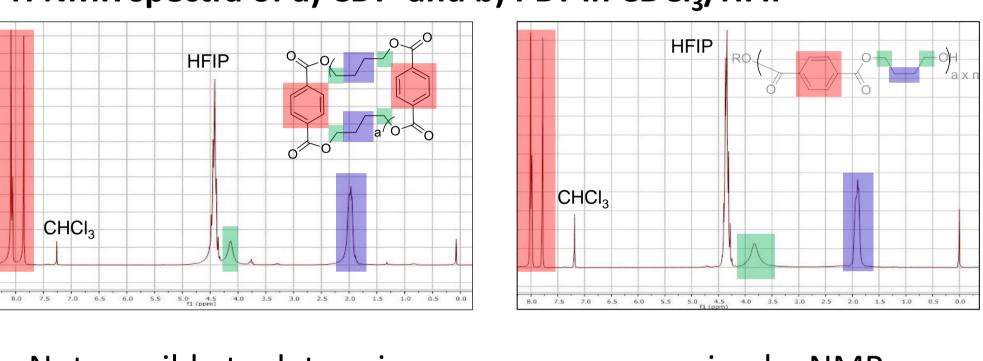


Control of Mn and D; Control of macromolecular architectures; Avoid metallic species (biomedical or microelectronic) Similar or better performances than organometallic species. \rightarrow Is it possible with CBT[®]?

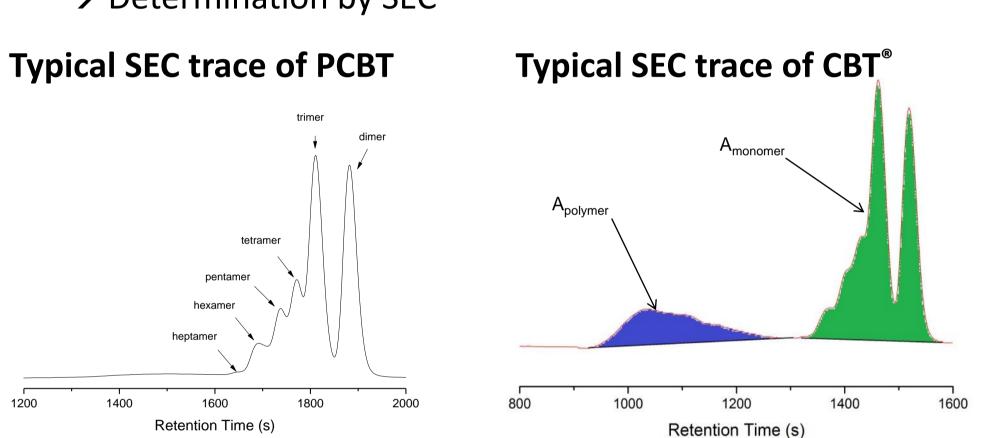
²Kiesewetter, M. K.; Shin, E. J.; Hedrick, J. L.; Waymouth, R. M. *Macromolecules* **2010**, *43*, 2093.

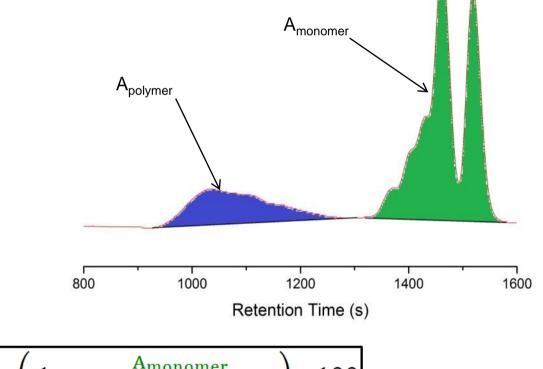

Catalysts selection

- Robust, non sensitive to air and moisture
- Must stand temperature > 220°C (reaction temperature)


Initiator choice

- Similar to initiator usually employed (benzyl alcohol)
- Must stand temperature > 220°C (reaction temperature)




Influence of the type of catalyst on the ROP of CBT in bulk **Determination of monomer conversion**

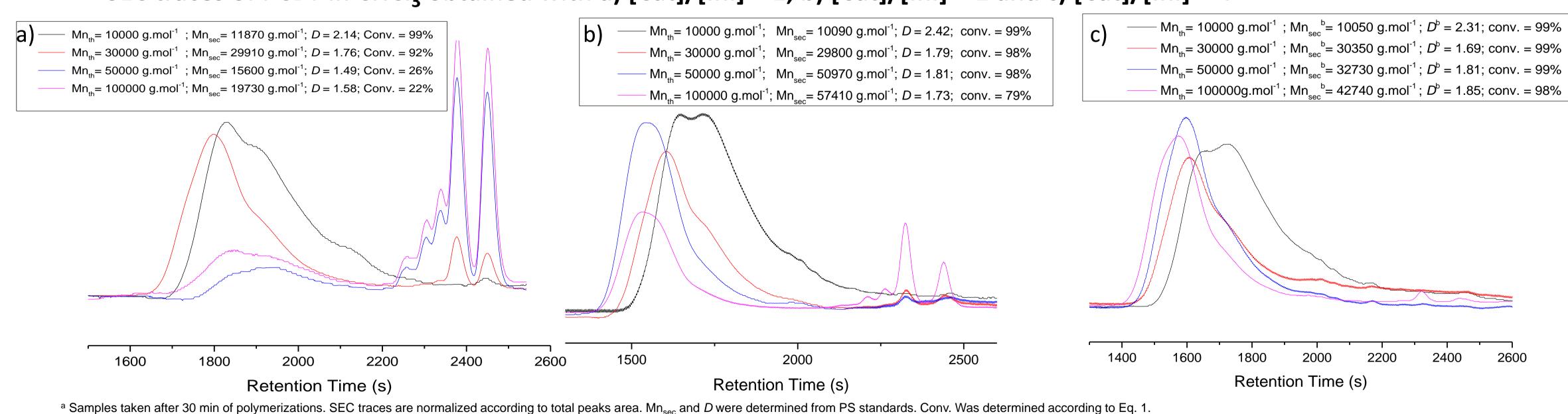
¹H NMR spectra of a) CBT[®] and b) PBT in CDCl₃/HFIP

Not possible to determine monomer conversion by NMR → Determination by SEC

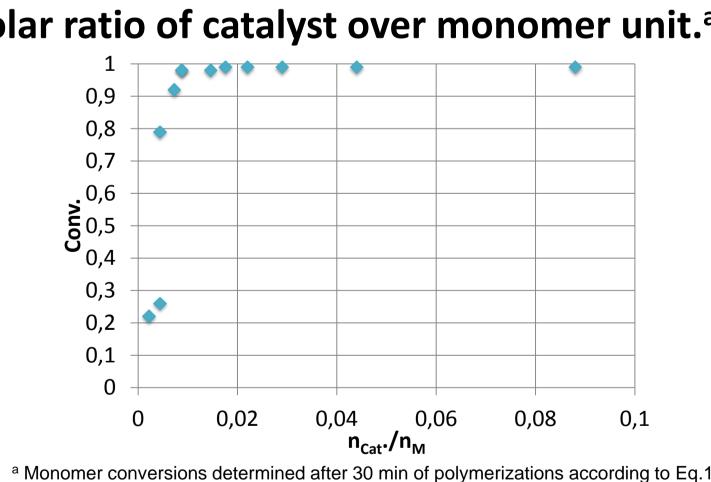
Catalysts effect

ROP of CBT in bulk with various organocatalysts ^a

Ехр	Catalyst	M _{n th.} (g/mol)	M _{n SEC} (g/mol) ^b	$\mathbf{\hat{D}}^{\mathrm{b}}$	Conv. (%)b
1	DBU	10000	13760	2,01	93
2	DBU	30000	30130	1,40	24
3	DBU	50000	32760	1,53	29
5	DPP	10000	9120	1,16	16
6	DPP	30000	-	-	0
7	DPP	50000	-	-	0
9	DMAP	10000	28630	1,69	78
10	DMAP	30000	56010	1,54	67
11	DMAP	50000	57120	1,52	40
13	TBD	10000	11870	2,14	99
14	TBD	30000	29910	1,76	92
15	TBD	50000	15600	1,49	26
17	Thiourea/DMAP	10000	12220	1,50	44
18	Thiourea/DMAP	30000	53690	1,30	20
19	Thiourea/DMAP	50000	47270	1,44	29
XX ¹	Stannoxane	5	50100	2.6	97

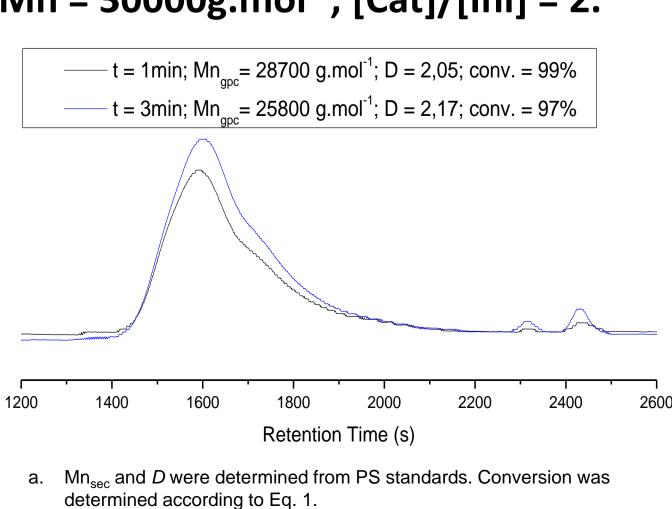

^a Polymerizations were carried out in the molten state at 208 °C under nitrogen atmosphere after drying CBT® and the initiator under vacuum at 100 °C. Under efficient stirring, 1 eq. of catalyst as compared to initiator was then added to the reaction mixture which was let to polymerize for 30 min at 208°C. b As determined by SEC in CHCl₃ according to PS standards. ^cAs determined by SEC in CHCl₃ according to Eq.1. ¹ Tripathy AR, Elmoumni A, Winter HH and MacKnight WJ, Macromolecules, 2005, 38, 709–715.

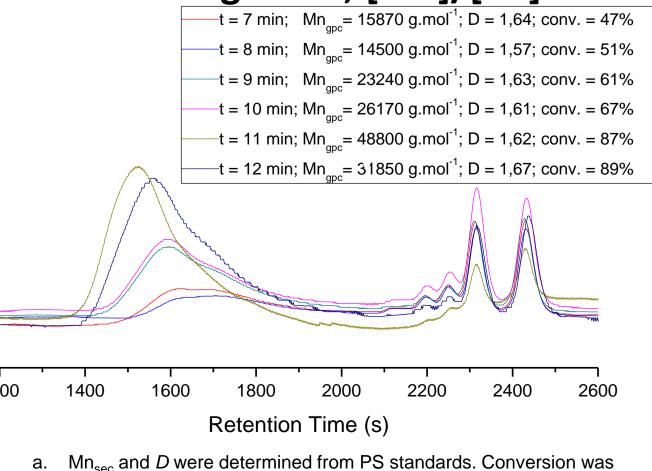
Conclusion:


- Nucleophilic catalysts appear to be the most effective
- Lower D are obtained with organic catalysts than with organometallic catalysts.
- TBD chosen for the remainder of the study
- Decrease of conversion with increase of targeted $Mn \rightarrow necessary to$ optimise catalysts content
- Only 3 min necessary to polymerise with stannoxane
- → how much with TBD?

Influence of TBD content on the ROP of CBT in bulk

SEC traces of PCBT in CHCl₃ obtained with a) [Cat]/[Ini] = 1, b) [Cat]/[Ini] = 2 and c) [Cat]/[Ini] = 4


Monomer conversion as a function of the molar ratio of catalyst over monomer unit.^a


 \rightarrow 1%_{mol} of TBD (as compared to monomer units) necessary to get full monomer conversion.

Optimisation of polymerization kinetics

SEC traces of PCBT in CHCl₃; targeted $Mn = 30000g.mol^{-1}; [Cat]/[Ini] = 2.a$

SEC traces of PCBT in CHCl_{3:} targeted $Mn = 50000g.mol^{-1}; [Cat]/[Ini] = 2.a$

ROP of CBT in bulk with [Cat]/[Ini] = 2; targeted $Mn = 50000g.mol^{-1}.a$

Exp.	Mn _{SEC} ^b (g.mol ⁻¹)	Ðb	Conv.c	Time(min)			
34	0	0	0%	5			
35	47000	1,60	92%	10			
36	38350	1,72	94%	15			
37	37700	1,73	93%	20			
38	21800	1,84	97%	25			
Mn _{sec} and <i>D</i> were determined from PS standards. Conversion was							

- → Increase in Đ and decrease in Mn suggests transfer reactions

Conclusion and perspectives

Conclusion:

- -TBD is the most active organocatalyst and more active than
- organometallic catalysts usually employed. -Only $1\%_{mol}$ (0.05\%) (vs monomer) of catalyst for full conversion (0.25% for organometallic catalysts)
- M_n up to 50 000 g.mol⁻¹ (similar to organometallic catalyst) - Control of M_n and low Đ
- Polymerization times similar to ROP with organometallic catalysts

Perspectives:

Block copolymers of PBT for thermoplastic elastomers PBT (Low Tg)

determined according to Eq. 1.

